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Abstract A “soft-modelling” computational approach of artificial neural networks
(ANNs) combined with experimental design (ED) has been applied successfully in
Chemical Kinetics for the prediction of kinetic rate constants. The system studied
comprises two consecutive first-order reactions and the kinetic data were computed
determining the values of both rate constants. The kinetic curves were distributed
according to an ED, and the central star composite experimental design (CSCED)
was chosen as the most appropriate. Computational treatments were performed on
synthetic data endowed with noise, after which they were applied to the data measured
in an experimental reaction between carbonyl cyanide 3-clorophenylhydrazone with
2-mercaptoethanol, computing the experimental kinetic data of absorbance acquired
at 3 wavelengths. The combined ANN and ED approach applied in chemical kinetics
proved to be robust and of general applicability and has the advantage of being a “soft-
modelling” method such that it was not necessary to solve the system of ordinary
differential equations to determine the explicit mathematical function between the
data and the kinetic rate constants. Additionally, upon using the CSCED experimental
design, it was possible to substantially reduce the number of experiments.
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1 Introduction

Computational study of the kinetics of a reaction or a system of chemical reactions is
mainly done for two reasons: to determine the kinetic and thermodynamic activation
parameters in order to explain a plausible mechanism by which the reaction occurs, and,
from an analytical point of view, to achieve a quantitative resolution of homogenous
mixtures. The classic treatment used in such studies is the resolution of the system of
ordinary differential equations (ODEs) to obtain an explicit mathematical function of
the chemical-physical property being monitored with time (usually the absorbance),
which includes the kinetic and thermodynamic parameters and initial concentration
of the species. This function is different for each kinetic system formed by several
species and different chemical reactions, and often involves not a few mathematical
problems. Thus, serious problems arise as regards indistinguishability and /or non-
unique identifiability, which lead to ambiguities in the solution of ODE system, as
occurs in the case of a kinetic model with two consecutive first-order reactions, as
studied here, where the function has 2 identical mathematical solutions that lead any
curve-fitting method to fail. Even when the kinetic model is slightly more complicated
(for example as from three species and four reactions), the ODE system lacks an exact
mathematical solution and it is necessary to apply numerical treatments or, sometimes,
approximate kinetic methods such as Steady State, Equilibrium State, etc. On other
occasions, the function to be minimized has singular points (local minima, saddle
points, etc.) that lead even the most robust of mathematical optimization methods to
fail.

The computational treatment of the kinetic data for the determination of the kinetic,
thermodynamic and analytical parameters is performed using (a) “hard-modelling,”
approaches [1] where the systems can be exactly described by formulas, equations
and the values of parameters, such as mathematical optimization techniques, curve-
fitting techniques, Kalman filter algorithms etc. and (b) “soft-modelling” approaches
when the exact description is not known or too complex, as multivariate curve res-
olution (MCR-ALS) [2],where kinetic data relating to absorbance acquired at multi-
wavelengths are computed at different times. It is also possible to apply methods that
include combinations of parts of both, giving rise to a hybrid approach, as is the case of
MCR-PLS [3]. The “soft-” approaches have certain advantages since they act without
prior knowledge of the model, such that it is not necessary to solve the ODE system;
with this one avoids the mathematical problems of the explicit function mentioned for
“hard-” approaches. However, these latter tend to be more robust and are useful and
efficient when the kinetic model is known and the function resulting from the resolu-
tion of the ODE system is known, is simple, and does not have the afore-mentioned
mathematical problems.

In the literature addressing computational kinetic treatment, a series of earlier works
[4,5] is of interest where the authors applied different methods of mathematical opti-
mization for the determination of kinetic and thermodynamic activation parameters.
These works were the precursors of later ones in which the authors developed different
computational programs for application in kinetic, analytical and chemical equilibrium
studies KILET [6,7]. To avoid the difficulties found in classic optimization methods, at
our laboratory we have designed a new and robust algorithm that has been implemented
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in different computational programs (KINAGDC, ANALKIN(AGDC)®, KINMODEL
(AGDC),…etc.) developed for the treatment of equilibria [8] and the kinetic study of
chemical systems [9–11]. These programs were applied to a broad range of reaction
models, successfully determining rate constants, analyte concentrations in multicom-
ponent mixtures (static and dynamic), molar absorption coefficients, etc. Additionally,
they allowed us to discriminate between reaction mechanisms, deciding which was
the most likely one and the one that best fitted the kinetic data. Later, we applied
artificial neural network (ANN) techniques by the ANN application of Matlab [12]
for the determination of kinetic parameters. A new approach (ED-ANN) was adapted
to the treatment of kinetic concentration data [13], grouped in a particular input matrix
(“training” matrix), whose rows jointly contained a sequential ordering of the data and
parameters and whose computation was performed with the Simulator Trajan Neural
Network and STATISTICA V.6. ANNs treatment of kinetic data has been used in mul-
ticomponent kinetic determinations, for analytical purposes [14,15], computing the
kinetic data acquired after the reaction of a reagent with the components of the mix-
ture. Moreover, ANN techniques have been used to study the behaviour of chemical
reactors in the field of Chemical Engineering [16–18] and the application in Kinetics
of an inversion procedure based on recursive neural networks [19].

In the present work we applied an approach combining methods of ANN and
experimental design (ED) for the prediction of kinetic rate constants of a system of 2
consecutive first-order reactions. This was a “soft-modelling” approach consisting of
application of the trained ANN with the optimum architecture and topology resulting
from the “training” process, ale to determine the kinetic parameters without any a
priori knowledge of the explicit mathematical function that was the solution of the
ODE system correlating the data and the kinetic rate constants. The approach was
also applied to the measured experimental kinetic data obtained from an experimental
reaction taking place in the laboratory.

2 Theoretical aspects

2.1 Chemical kinetic aspects

Let us consider a chemical system formed by nr chemical elementary (or concerted)
reactions where ns chemical species can be involved. According to IUPAC’s norms
[20], the system of reaction can be represented:

0 = ν1,1B1 + ν2,1B2 + ν3,1B3 + · · · · · · + νns,1Bns

0 = ν1,2B1 + ν2,2B2 + ν3,2B3 + · · · · · · + νns,2Bns

0 = ν1,3B1 + ν2,3B2 + ν3,3B3 + · · · · · · + νns,3Bns

.............................................................................

0 = ν1,nr B1 + ν2,nr B2 + ν3,nr B3 + · · · · · · + νns,nr Bns

it can be expressed for the r-th chemical reaction with the generic equation,
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0 =
ns∑

j=1

νj,rBj (1)

where

Bj = chemical species involved in the system of reactions
r = (1, . . . , nr) number of chemical reactions
j = (1, . . ., ns) number of chemical species
kr = kinetic rate constant of the r-th reaction
νj,r = stoichiometric coefficient of the species Bj in the r-th reaction
νj,r < 0 when Bj plays only the role of reactant in the r-th reaction
νj,r > 0 when Bj plays only the role of product in the r-th reaction

When the reaction is an elementary or concerted one, the absolute values of the
kinetic order (zl,r) and stoichiometric coefficient of Bj coincide, that is |νl,r| = |zl,r|.
The rate differential equation of the chemical species Bj in the r-th is given by

d
[
Bj

]

dt
= krνj,r

ns∏

l=1

[Bl]
|zl,r | (2)

where Bl are the species playing only the role of reactants in the r-th reaction (νl,r <

0). Each chemical species can take part in several reactions and the rate differential
equations will be the sum extended over those reactions where the reactant Bl appears,
obtaining a system of ODEs according to the generic equation,

d[B j]
dt

=
nr∑

r=1

krνj,r

ns∏

l=1

[Bl]
|zl,r | (3)

The general solution of the system of rate ODEs give the explicit function of the
concentrations of the all species with the time ([Bj]ti).

The chemical system formed by 2 first order consecutive reactions has been studied
in the present work and can be represented as

ν1,1B1
k12−→ ν2,1B2

ν2,2B2
k23−→ ν2,3B3

Considering ν1,1 = ν2,2 = −1 and ν2,1 = ν2,3 = 1, we have

B1
k12−→ B2

k23−→ B3

According this, the system of ODE can be expressed using matrix notation [21] as

d

dt

∣∣∣∣∣∣

[B1]
[B2]
[B3]

∣∣∣∣∣∣
=

∣∣∣∣∣∣

−k12 0 0
k12 −k23 0
0 k23 0

∣∣∣∣∣∣

∣∣∣∣∣∣

[B1]
[B2]
[B3]

∣∣∣∣∣∣
(4)
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When [B1]0 �= 0 and [B2]0 = [B3]0 = 0, the integration of the ODE gives the
following expressions of the concentrations for B1, B2 and B3

[B1] = [B1]0e−k12t

[B2] = [B1]0k12

k23 − k12

(
e−k12t − e−k23t

)
(5)

[B3] = [B1]0 − [B1] − [B2] = [B1]0

(
1 − k23

k23 − k12
e−k12t + k12

k23 − k12
e−k23t

)

According with the Lambert-Beer-Bouguer law, the expression of the absorbance
measured, will be:

Aλ
j,ti = ελ

j · [B j ]ti (6)

where Aλ
j,ti

is the absorbance of the species Bj at the, time ti and path length 1 cm and

ελ
j is the molar absorption coefficient of Bj at the wavelength λ. The absorbance of

the mixture (Aλ
T,ti

) can be expressed as:

Aλ
T,ti =

ns∑

j=1

Aλ
j,ti =

ns∑

j=1

ελ
j · [B j ]ti (7)

2.2 Artificial neural networks

Artificial neural networks (ANNs) are parallel interconnected networks of simple
computational elements called neurons and are structured in layers that are intended
to interact with the objects of the real world in a similar way to the biological nervous
systems [22]. Parallel processing is the ability of the brain to simultaneously process
incoming stimuli of differing quality. The multilayer neural network uses sets of input
data and parameters (called “targets”), distributed in 2 input matrices when Matlab
is applied. The elements of the input matrix are the data, where one row contains
a single curve and all the curves thus obtained (nc) are grouped in an “input data”
matrix. The “target matrix” is formed by the sets of parameters (np). In our case, the
input data matrix contained the kinetic data of all curves expressed in AT, Aj, [Bj] or
αj (molar fraction of the species Bj) and the “target matrix” (nc ×np) contained the set
of kinetic rate constants (kmn). Formally, a multilayer neural network is an oriented
graph in which the nodes represent a set of processing units, called neurons, and the
connections represent the information flow channels. Each connection between two
neurons has an associated value called “weight” which specifies the strength of the
connection between neurons. Positive and negative values determine excitatory and
inhibitory connections, respectively. The choice of a specific class of networks for
the approximation of a nonlinear map depends on a variety of factors dictated by
the context and is related to the desired accuracy and the prior information available
concerning the input-output pairs.
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The first layer of a multilayer neural network contains neurons that receive the
input data values from the elements of the input data matrices. This information is
transmitted from the i-th neuron of a layer to the j-th neuron of the subsequent one,
with a weight wji. A neuron parameter (“bias”) is summed with the weighted inputs
of the neurons and passed through the transfer function to generate the output of the
neurons.

The layer following the input one is called “hidden”. In each neuron of a “hidden”
layer the weighed inputs coming from the previous one are summed with each other and
added to a “bias”. The result is then transformed by means of a suitable mathematical
function to obtain an output called “activation of the neuron”, which is transferred to
the neurons in the next layer after another weighing step. The output parameters values
are calculated in the last layer (“output” layer) by means of a suitable transformation
function.

The process described is called to as the “training” of the multilayer neural network
and constitutes an iterative method where after each iteration (“epochs”), the calculated
values of the parameters are grouped in the “output matrix” (boutput

i j ) and they are

compared with those of the corresponding curve in the “target matrix” (btarget
i j ) as

shown the Scheme 1.
The value of the mean squared error (MSE), expressed in absolute value, is calcu-

lated according expression:

M SE =
(∑n p

i=1

∑nc
j=1(b

output
i j − btarget

i j )2

n p · nc

)1/2

(8)

where nc is the number of curves and npis the number of parameters and nc × np are
the dimensions of both matrices (“ output matrix” and “target matrix”).

During the process of “training”, “weights” and “bias” values are modified with
suitable mathematical optimization algorithms in order to minimize the calculated
values of MSE in each epoch. In the present work, the back-propagation algorithm
was used. The iterative process finishes when the minimum value of MSE is reached,
after which the “training” process can be considered to be completed.

It is necessary to know the optimal architecture and topology of the multilayer neural
network in order to obtain the best results when ANN is applied to the system under
study. This can be performed using the methods described in a recent review [23]. We
have used a method of “trial and error” by minimizing the MSE values obtained for
the different possible configurations of the same number of “hidden” layer/s. It must
to determine the minimum value (optimum) of the MSE for all possible configurations
for the “hidden” layer/s chosen. For each “hidden” layer, a graph of MSE values vs.
the number of neurons shows that initially, for the lower configuration, the value of
the MSE decreases rapidly when the number of neurons increases, but after a constant
value or a poor improvement is obtained. The optimum number of neurons in that
“hidden” layer is given by the point of intersection of the two branches of the graph.
Sometimes, a small minimum appears near this intersection point. The architecture of
the neural network can be written in abbreviated notation as (ninp, nhid, nout), where
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Scheme 1 Flowchart of the
iterative method of the
optimization of output/target
values in the “training” of the
neural network

Input 
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ninp is the number of neurons in the “input” layer, nhid in the “hidden” layer and nout

in the “output” layer.
Neural network “training” is completed with the processes of “validation” and

“testing”. These are 2 control and verification processes of the iterative minimization
method between the elements of the “output” and “target” matrices. Among the differ-
ent curves comprising the “input” matrix, random choice is made of a percentage of
the total, established previously (5 %, 10 % . . .), which gives rise to a “sub-matrix” of
input curves that are subjected to iterative optimization until a minimum MSE value is
reached. It is thus possible to verify the validity of the “training” process by ensuring
that it is convergent, that it has an appropriate termination, and that there not been any
overfitting, since any possible “overtraining” has taken been into account. Validation
is completed when in a given number (≥ 6) of consecutive “epochs” the MSE remains
constant or shows a slight tendency to increase. The “testing” process is similar, except
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that the control of the process is performed by controlling the computation time instead
of the number of “epochs”.

The process of “prediction” consists of the determination of the unknown parame-
ters from a set of experimental data after application of the optimal and trained neural
network. Obviously, the elements of the “target” matrix are unknown for this “pre-
diction” process, and only the “input data” matrix is provided to the neural network.
In our case, the elements of the “input data” matrix in the process of “prediction”
are experimental kinetic values (AT, Aj, [Bj], αj, etc), acquired from a system of
reactions developed at the laboratory.

2.3 Experimental design

The experimental design (ED) is a method to select within the working space according
to a well-distribution in order to extract the maximum amount of information. The
implementation of a suitable ED is crucial to ensure the success of the “training”
process of neural networks. In our case, in the ED two factors were involved (k12 and
k23), whose “responses” are the kinetic data of the base of the input curves, which
can be of 2 types according to whether they correspond to the contribution of all the
species (AT) or to the individual contribution of a single species (Aj, [Bj] and αj). In
the ED of the neural network it is necessary to consider 2 variables: the limit values
of both factors that configure the “experimental domain” and their relative values
(k12/k23). Both variables must ensure that the binary combinations of the kinetic
constants will generate a set of kinetic curves that will have sufficient information to
ensure an optimal “training” process of the neural network. Within the interval of time
considered, 2 requisites must be reached: (a) the kinetics must achieve a conversion
of at least of 80 %(ξ ′

end = 0.8ξ ′
max) and (b) the values of the kinetic data must range

within at least 40–50 % so that the neural network will be able to discriminate clearly
between the different input curves. Additionally, the number of “levels” of thefactors
of the ED must be suitable if one is to avoid useless computational work and avoid large
differences in the spacing of the values of the “responses”. Accordingly, to optimize the
ANN “ training” process the kinetic curves of the “input” matrix must have efficient
kinetic information and must be correctly distributed according to the choice of a
suitable experimental design and an appropriate “experimental domain”. Bearing in
mind the characteristics of the kinetic system under study, we have chosen as the most
suitable one, the ED corresponding to the central star composite experimental design
(CSCED) distribution [24] for the combining with the ANNs technique.

3 Computational aspects

The computational work has been performed using Matlab divided in 3 different
aspects: (a) the general computational treatment of ANN by means of the application
of Matlab (“Neural Networks Toolbox”) with the creation of user’s interfaces (GUI)
including the appropriate analysis of Residuals and errors (MSE, SD, etc) (b) design
and performing by us of specific computational executable programs (##.m type) in
the Matlab environment using “M” language, functions and applications for obtaining
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synthetic data, mathematic optimization, fitting functions, etc. and (c) complex 3D
graphic representations, endowed of motion and looking for the best perspective in
order to obtain an easy visualization of the figure. In the case of the simpler plots other
software was used (Origin 8.6 and QTplot)

4 Results and discussion

4.1 Organization of the kinetic data

We considered several types of organizations of the kinetic data in the input matrices
to enrich the input kinetic information that would guarantee a more efficient “training”
process. The neural network should be endowed with the highest number possible of
input options for organizing the data, and this must lead to concordant results. 3-D
plotting (AT/number of curves/time) of the curves corresponding to the AT data can
be seen in Fig. 1a. In the curves of the individual kinetic variables (Aj, [Bj] and αj)
we performed a sequential organization; that is, first the data set corresponding to the
species B1, then those of the species B2, and finally those of the species B3 (Fig. 1b).
An especially applicable ordering for the kinetic system studied here (3 species and
3 coordinate axes) can be seen in a 3D plot (of the “banana” type) upon representing
each individual kinetic variable directly on each of the 3 coordinate axes where all
points belong to the same plane (Fig. 1c).

4.2 Training of the ANN. optimal architecture

In order to determine the optimum architecture of the neural network we evaluated the
influence of the different variables on the “training” process of the ANN, assessing
the effect of each of them in each layer.

4.2.1 “Input” layer

To determine the optimum number of curves we analyzed the ideal number of kinetic
data of each kinetic curve. We tested 25, 50, 75 and 100 values, 50 data (50 neurons)
proving to be optimum, since the improvement in the results obtained with 75 and
100 values did not justify the huge increase in computation time involved. The ideal
maximum range of variation of both factors was the same for both, with limit values
of 3.12 × 10−2 and 1.19 × 10−1min−1. We varied the number of levels and nodes of
both factors, analyzing the responses made. We checked the configurations formed by
29, 37, 45 and 53 nodes or curves, being the optimum configuration proved to be that
formed by 45 nodes corresponding to 9 levels and 4 sub-levels (Fig. 2). This value
offered a sufficient number of responses, with no large differences in the spacing, and
also is a suitable number of curves for the computational work to be carried out. The
dimensions of the input matrix were 50 × 45.

Since the kinetic curves were generated synthetically, the percentages of curves in
the “validation” and “testing” processes may be high with respect to the “training”
curves. We tested several values, percentages of 80/10/10 proving respectively to be
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Fig 1 3D plots of the 45 kinetic curves taking part in the curve base of the “input matrix” used for
the “training” process of the neural network, a each curve contains 50 data of synthetic data of the total
absorbance (AT) endowed with “noise”; b 150 data each curve of synthetic data of the total absorbance
(AT) endowed with “noise” with a sequential organization c “banana” type plot after representation of the
concentrations of the 3 species [B1], [B2] and [B3] on each one of the 3 coordinate axes

optimum for “training”, “validation” and “testing”, since these percentages ensure a
sufficient number of curves for the “training” process. A random error (noise) must be
imposed on the synthetic data, with a magnitude similar to the intrinsic experimental
error of the measurement; that is, ±1 × 10−4 to the absorbance data and ±1.0 × 10−8

to those of concentration ([B1]0 = 5.50 × 10−5mol dm−3).

4.2.2 “Hidden” layer/s

Determination of the optimum number of “hidden” layers and that of the neurons of
each of them is crucial for the determination of the optimum architecture of the neural
network, such that it is necessary to test the highest number of cases possible. The
procedure, of the trial and error type, consist of initially fixing the number of “hidden”
layer/s, carrying out the “training” of the neural network with different configurations,
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Fig 2 Experimental design (CSCED) constituted by 2 factors (k12 and k23) and 45 points distributed in
9 levels (points 1–37) and 4 sub-levels: (points 38–45) taking part in the curve base of the “input matrix”
used for the “training” process of the neural network

determining the values of MSE, and plotting the values of the MSE values versus the
number of neurons for each configuration. As explained above, the observed minimum
or the point of intersection of the two branches of the plot, provided (on the abscissa)
the optimal number of neurons in that “hidden” layer.

For the AT input data and a structure of a single “hidden” layer, we obtained an
optimal configuration of 5 nodes (Fig. 3a), and 6/10 as the optimal configurations in
the case of 2 “hidden” layers (Table 1), obtaining with this latter multilayer structure
better results than that of a single hidden layer. In the case of the individual input data
(Aj, [Bj] and αj) and a single “hidden” layer, a configuration of 8 nodes was obtained
as the optimum value (Fig. 3b).

4.2.3 “Output” layer

The number of neurons of the “output” layer corresponds to the number of parameters
to be predicted; in our case 2. Since Matlab offers the possibility of the application of
several optimization algorithms, we tested all of them, choosing as the best the one
that provided the best results. We then evaluated the results obtained upon applying the
Steepest Descent, Fletcher-Reeves, Scales Conjugate Gradients, Quasi-Newton, BFGS
Algorithm and Levenverg-Marquardt (LM), etc. algorithms, the latter (LM) being
the one finally chosen since its afforded acceptable MSE values within a reasonable
computing time and a suitable number of “epochs”.

According with the above we performed the ANN “training” process in the com-
putation of synthetic data endowed with noise with the neural network on the basis of
the optimal architecture that we obtained, with the following structure: the input layer
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Fig 3 Optimization of the number of neurons (nodes) of the single “hidden” layer, a from the computation
of individual input data (A j , [B j ] and α j ) and b when AT input data are computed

and the “output” layer had 50 and 2 neurons, respectively, while the composition of
the hidden layer depended on the type of kinetic data of the base of the curves. In the
case of individual data (Aj, [Bj] and αj), the optimum architecture was (50, 1, 2) with
a single “hidden” layer, whose suitable configuration had 5 nodes.For the AT data, the
optimal architecture was (50, 2, 2) with 2 hidden layers and the configuration of each
layer being of 6/10 according with the values of Table 1.

The process of “training” the optimum neural network was performed with the
following characteristics; (a) the kinetic data of the “input” matrix formed a base of
curves composed of 45 curves, in agreement with a CSCED chosen, with 50 data
for each curve and a standard matrix organization in the case of the AT data and a
sequential one for the Aj, [Bj] and αj data. (b) the noise value imposed on the synthetic
data ±1 × 10−4 for the absorbance data and ±1.0 × 10−8 for the concentration
data; (c) in all the curves we considered kinetic data with a maximum conversion of
no less than 82 % (ξ ′

end = 0.82ξ ′
max) and the differences between their limit values

were always higher than a value of around 50 %; (d) the values of the percentages of
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Table 1 Values of MSE for the
“training” process of a neural
network with 2 “hidden” layers
and several configurations

The optimal configuration
proved to be 6/10

N1 N2 MSE

3 8 3.55 × 10−12

4 10 4.07 × 10−13

5 7 4.08 × 10−13

5 10 6.05 × 10−12

6 7 6.8 × 0−12

6 9 1.82 × 10−12

6 10 1.43 × 10−13

7 6 4.43 × 10−12

8 6 1.42 × 10−12

8 7 1.05 × 10−12

9 7 7.55 × 10−12

10 5 8.61 × 10−12

10 10 2.74 × 10−12

Table 2 Results of the
“training” process of a neural
network (50, 1, 2) with a single
hidden layer and a configuration
of 5 nodes in which the Aj data
were computed

BASE: 45 curves, 50 input data

%TRAINING/VALIDATION/TESTING: 80/10/10

ALGORITHM: Levenverg-Marquard

MSE TRAINING: 4.39595 × 10−8

MSE VALIDATION: 2.45985 × 10−8

MSE TESTING: 2.36959 × 10−8

EPOCHS: 100

TIME/s: 0:00:04

GRADIENT: 3.7 × 0−5

µ: 10−7

“ training”, “validation” and “testing” chosen were in all cases 80/10/10, and (e) the
suitable optimization algorithm used was that of Levenverg-Marquardt (LM).

Table 2 shows the results of the “training” process of a neural network (50, 1, 2)
with a single “hidden” layer and a configuration of 5 nodes in which the Aj data were
computed.

The profiles of the output/target regression lines are shown in Fig. 4, correspond-
ing to the processes of (a) “ training”, (b) “validation” (c) “testing” and (d) jointly
all processes simultaneously. The results obtained point to satisfactory MSE values
(Table 2) and orders of magnitude similar to those of the noise errors of the data. The
residuals distribution shows acceptable maximum fluctuations and the regression lines
have equations with slopes close to unity, significantly null ordinates at the origin, and
very good values (0.99998) of the Regression coefficients (R).
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Fig 4 Plots of the representation of the Regression lines outputs/targets of the sets of curves, for the
a “training” process b “validation” process c “testing” process and d jointly representation for the “training”,
“validation”, and “testing” processes

4.3 Results of the prediction of the ANN

4.3.1 Synthetic kinetic data

In the study of the process of “prediction” of k12 and k23 from the synthetic data we
quantitatively evaluated previously the influence of important variables such as the
value of the noise, the number of curves to be predicted and the minimum number of
species necessary for the “prediction”. This is possible with synthetic data, since the
values of the parameters are known whereas in the case of experimental data the values
of the parameters to be predicted are obviously unknown. The influences studied were
as follows:

(a) The noise value: we imposed a priori different noise values on the synthetic
data and determined the correlation and the tendency to variation of the error (SD) of
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Fig 5 Graphic representation of the Experimental design (CSCED), where the 16 “prediction” points
(1–16) are plotted jointly with the 45 points used for the process of “training” of the neural network

k12 and k23 for the different noise error values. It is not necessary to have a rigorous
knowledge of the equation of the SD vs. noise regression lines; it suffices to know
the individual SD values for the working noise and of the limits of the “experimental
domain” of the factors in the maximum range of variation of the ED. These values
were:

k12 = (3.1310−2 ± 3610−4) min−1 and k23 = (1.18810−2 ± 2510−4) min−1

k12 = (1.18810−2 ± 3610−4) min−1 and k23 = (1.18810−2 ± 2510−4) min−1

(b) Number of input curves: we determined the optimum number of curves for
the “prediction” process, generating synthetic data of AT, Aj, [Bj] and αj from points
(k12, k23) of the ED different (not coincident) from those used in the “training” process
corresponding to points 1–16 of Fig. 5. The plot of the SD values of both rate constants
determined in the “prediction” processes on varying the number of curves chosen
is shown in Fig. 6. It may be seen that in general upon increasing the number of
curves moderately, the value of SD decreases for both rate constants down to a certain
threshold value, after which the SD values show a tendency to decrease slightly or
remain constant. This value is the optimal one and proved to be in the 8–12 curve
range when starting from a base of 45 input curves.

(c) Minimum number of species monitored: we analyzed the possibility of the
“prediction” of the rate constants when only 2 species or only a single one contributed
to the kinetic data and compared the results with those obtained when the contribution
was from the three species. This is a common situation, both when in the spectrum
not all the species absorb and when the absorption of one of them predominates over
those of the others and the relative values of the molar absorption coefficients are
very different. On computing the kinetic data provided by only 2 species, in general
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Fig 6 Plot of the SD values obtained in the “prediction” processes of both rate constants (k12 and k23)

versus the number of curves when both absorbance and concentration data are computed

results similar to those obtained by means of ANN computation of the data in which
the 3 species contribute were obtained. This situation was also found in the case of the
computation of kinetic data from a single chemical species if this corresponds to the
intermediate species (B2) since it is the one involved in both consecutive reactions.

4.3.2 Experimental kinetic data

We performed the ANN treatment to the measured data from an experimental kinetic
of a chemical reaction taking place in the laboratory. This was the reaction between
carbonyl cyanide 3-chlorophenylhydrazone (3-Cl)-PHPD (A) with 2-mercaptoethanol
(B). The kinetics of this reaction has been widely studied in the literature [25–27],
where the various authors used different classic kinetics methods with concordant
results. The reaction occurs according to a kinetic system that involves two irre-
versible consecutive reactions (Scheme 2). In the first step, an intermediate adduct
(C) is formed, which is then hydrolyzed in an apparently intramolecular reaction to
give the product 3-chlorophenylhydrazonocyanoacetamide, (3-Cl)-PHCA) (D) and
the subproduct ethylene sulphide (E).

Since the reaction is carried out in an excess of the reagent (B), pseudo-first-order
can be assumed and it is possible to express this schematically according to IUPAC
norms [20]:

B1
k12−→ B2

k23−→ B3

where species (A) is represented by B1, (C) by B2 and (D) by B3. Chau et al. [26]
performed a classic kinetic study based on data from the total absorbance (AT) of the
reacting mixture, monitored at 3 wavelengths (350, 375 and 400 nm), (Fig. 7) when
the reaction conditions are, temperature of 20.0 ◦C and pH = 4.3. We have used these
kinetic data for the computational treatment with the approach combining ANNs and
experimental design.
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Fig 7 Profiles of the values of AT with time acquired to 3 wavelengths (350, 375 and 400 nm) for the
reaction between (3-Cl)-PHPD with 2-mercaptoethanol

The procedure of the ANN treatment carried out by us has the same steps as in the
case of the synthetic data with noise; that is, the choice of a suitable ED, “training”
of the neural network, evaluating the effect of the variables that provide the ideal
conditions of the process and the optimal architecture of the neural network, and,
finally, the “prediction” of the unknown values of both kinetic constants (k12 and k23)

whose values we aimed to determine. The characteristics that made the “training”
process optimal were logically almost identical to those used in the case of the synthetic
data. Thus, the most suitable “experimental design” was the same; that is, it was of
the CSCED type. Bearing in mind the values of the initial concentration and those of
the molar absorption coefficients of each species at each wavelength, we distributed
the 45 curves of the base in 9 levels and 4 sub-levels and an “experimental domain”
in the 0.35–0.02 range for both factors. As in the case of the synthetic data, each of
the 45 curves forming the input base had 50 data of total absorbance (Aλ

T,ti
), with

a significant range of fluctuation (≈ 50 %) and ξmax = 0.85ξ , in all cases using the
80/10/10 curve percentage ratio for “training”, validation” and “testing”. To determine
the optimal architecture of the neural network, must be subjected to a new treatment.
To determine the optimal structure and configuration of the hidden layer/s, we first
considered an ANN with a single hidden layer (50, 1, 2), assaying a broad range of
cases of configurations with different numbers of neurons. In all cases, the MSE values
concerning “validation” and “testing” proved to be high (around 10−3 − 10−4) and
hence unacceptable. Neither were acceptable the results of the regression lines of the
output/target for each configuration nor the “performance” profiles of the curves of the
three blocks. Accordingly, it was necessary to rule out the neural network formed by a
single “hidden” layer and we tested a neural network formed by 2 “hidden” layers (50,
2, 2) and different configurations for both. The results obtained for the configurations
(N1/N2) that provided the minimum validation values at the three working wavelengths
(6/10) can be seen in Table 3.
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Table 3 Results of neural network formed by 2 hidden layers (50, 2, 2) and different configurations when
experimental data of the reaction between (3-Cl)-PHPD with 2-mercaptoethanol acquired at 3 wavelengths,
have been computed

N1/N2 λ/nm

350 375 400

3/8 6.37E−7 2.40E−8 1.20E−7

5/7 2.58E−10 4.80E−9 1.85E−7

4/10 8.00E−8 1.72E−9 1.24E−7

5/10 2.63E−9 3.41E−9 2.25E−8

6/10 4.31E−9 1.42E−11 5.23E−9

In light of these results, it may be concluded that the optimal architecture of ANNs
for the treatment of experimental kinetic data from the reaction under study has two
different N1/N2 configurations, depending on the working wavelength. Thus, when
the absorbance data were measured at λ = 350nm the neural network was (50, 2,
2), 5/7 being the optimal configuration of the “hidden” layers, and when the data
were acquired at 375 and 400 nm, the neural network was (50, 2, 2), with an optimal
configuration of 6/10. Thus, we were able to predict the unknown values of the rate
constants (k12 and k23) by applying these two types of architecture and topology of
the neural network depending on the value of λ. In all the “predictions”, we carried out
a study of Residual Analysis and Goodness of Fit, determining the standard deviation
(SD) of the fit with the expression:

SD =
⎛

⎜⎝

∑nd
i=1

∑nc
j=1

(
Aexp

i j − Acalc
i j

)2

nd .nc

⎞

⎟⎠

1/2

(9)

where Aexp
i j are the absorbance values of the input matrix and Acalc

i j are the absorbance
values recalculated with the values of the kinetic constants obtained in the “prediction”
process; nd is the total number of data on the absorbance of the input matrix, and nc
is the number of curves.

Table 4 shows the results obtained in the “prediction” process; that is, the values of
the k12 and k23 rate constants together with the SD errors obtained from the Residual
analysis after combined treatment of ANNs and Experimental Design of the data on
the reaction under study acquired at each of the 3 wavelengths. It may be seen that
the results obtained with the “prediction” for the values of the rate constants obtained
to the 3 wavelengths point to that coincide satisfactorily. This is proof in favor of
the suitability and applicability of the ANN method for the kinetic treatment and
consequent determination of the kinetic parameters. The mean values calculated from
the individual values at the three wavelengths, for both kinetic constants at 20.0 ◦C
and pH = 4.3, are those corresponding to the kinetics of the reaction studied. These
mean values (< k12 >= 0.3381 min−1 and < k23 >= 0.0195 min−1) coincide with
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Table 4 Values of the k12 and k23 rate constants together with the SD errors obtained after the combined
treatment of ANNs and experimental design in the “prediction” process of the experimental data on the
reaction between (3-Cl)-PHPD with 2-mercaptoethanol acquired at 3 wavelengths

λ/nm k12/min−1 k23/min−1 SD

350 0.3332 0.0204 9.26E−4

375 0.3359 0.0202 7.70E−3

400 0.3454 0.0179 6.10E−3

450 0.3672 0.0318 5.92E−4

those obtained by other authors [25–27] who have independently studied the kinetics
of this chemical reaction by means of classical kinetic methodologies.
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